Papers

  • Mass Volume curves and anomaly ranking. S. Clémençon, A. Thomas. Electronic Journal of Statistics (2018). pdf
  • Anomaly detection in extreme regions via empirical MV-sets on the sphere. A. Thomas, S. Clémençon, A. Gramfort, A. Sabourin. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (2017). pdf
  • Learning hyperparameters for unsupervised anomaly detection. A. Thomas, S. Clémençon, V. Feuillard, A. Gramfort. Anomaly Detection Workshop, ICML 2016. Co-winner of Google best paper award. pdf
  • Calibration of One-Class SVM for MV set estimation. A. Thomas, V. Feuillard and A. Gramfort. In 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015. pdf

Talks

  • Rare Events, Extremes and Machine Learning Workshop, 2018. The Mass Volume curve, a performance metric for unsupervised anomaly detection. slides
  • February 2018 Center for Data Science meeting. Anomaly detection in scikit-learn. slides
  • CAP 2016. Learning hyperparameters for unsupervised anomaly detection.
  • Anomaly Detection Workshop, ICML 2016. Learning hyperparameters for unsupervised anomaly detection.
  • DSAA 2015. Calibration of One-Class SVM for MV set estimation.